
The Monod-Wyman-Changeux model for equilibrium and kinetic O2 binding. 

 

To fit the kinetic parameters the Monod-Wyman-Changeux (MWC) equation was extended to 

incorporate rate parameters.  

The MWC model, originally developed by Niesel, assumes two conformational states of the 

hemoglobin,  T (tense)  and  R (relaxed). Hemoglobin may exist in ten forms,  T0-4  and  R0-4 , the 

subscript (0-4) denoting the number of oxygen molecules bound. In each state, the four oxygen binding 

sites have the same oxygen affinity with oxygen binding parameters defined as  KT  and  KR  

respectively, and rate parameters denoted  kT ,  k'T ,  kR  and  k'R  respectively, where the  k  is 

dissociation and the  k'  association;  K=k'/k . The association can be expressed in sec−1mol−1 or in 

sec−1kPa−1. Since saturation is against oxygen pressure  P, we will use the second form. 

Since the  Hb  has four binding locations, from the forms  Tn ,  Rn  n molecules can dissociate so the  k  

has to be multiplied by  n, whereas  4−n  molecules can associate and the  k'  has to be multiplied by  

(4−n): 

 n kX Xn = (4−[n–1]) k'XP Xn−1 X = R or T,  n = 1-4 

from which can be solved: 
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Then, the total amount of species  X , Xt , is - note, that  X4 = (KXP)4X0 : 
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  (KXP) n X0 = (1 + KXP)4 X0 = {1 + 1/(KXP)}4 X4  X = R or T 

and the total amount of oxygen bound to form  X , denoted here as  XO2 : 
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  (KXP)n X0 = 4 KXP (1 + KXP)3 X0 = 4{1 + 1/(KXP)}3 X4     X = R or T 

Also, a parameter is needed for the equilibrium between  T  and  R  state. Either 

 T0 = L0 R0   or  T4 = L4 R4  -  note, that L4 = (KT/KR)4L0 . 

Then the total amount of hemoglobin is: 

 cHb,t = {L0(1 + KTP)4 + (1 + KRP)4}R0 = [L4{1 + 1/(KTP)}4+{1 + 1/(KRP)}4] R4 

and the total amount of bound oxygen – note, that this can be up to 4 times the total amount of  Hb: 

 cO2Hb = 4{L0KTP(1 + KTP)3 + KRP(1 + KRP)3}R0 = 4 [L4{1 + 1/(KTP)}3+{1 + 1/(KRP)}3] R4 

so that  saturation  S  is: 

 S = 
L0KTP(1 + KTP)3 + KRP(1 + KRP)3

L0(1 + KTP)4 + (1 + KRP)4   =  
L4{1 + 1/(KTP)}3+{1 + 1/(KRP)}3

L4{1 + 1/(KTP)}4+{1 + 1/(KRP)}4 

and the desaturation  1–S: 

 1–S = 
L0(1 + KTP)3 + (1 + KRP)3

L0(1 + KTP)4 + (1 + KRP)4  =  
L4/(KTP){1 + 1/(KTP)}3+1/(KRP){1 + 1/(KRP)}3

L4{1 + 1/(KTP)}4+{1 + 1/(KRP)}4   
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The definition with L4 is useful as it was shown that the model can be fitted at a wide range of 

conditions by using essentially only one variable,  KT , while  KR  is constant and  L4  is almost 

constant. Note, that the amount of 'reduced Hb' available for O2  cRedHb = 4cHb−cO2Hb is: 

 cRedHb = {4L0(1 + KTP)3 + (1 + KRP)3}R0 = 4[L4/(KTP){1 + 1/(KTP)}3+(1/KRP){1 + 1/(KRP)}3] R4 

 

The rate parameters in the MWC model are derived similarly. Dissociation  k  will be from the 

occupied sites: 

 k cO2Hb = kTTO2 + kRRO2 = kT 4KTP (1 + KTP)3 T0 + kR 4KRP (1 + KRP)3 R0 

    = 4{L0 kT KTP (1 + KTP)3 + kR KRP (1 + KRP)3}R0 

      or  = 4[L4 kT {1 + 1/(KTP)}3 + kR {1 + 1/(KRP)}3]R4 

so that  –  note, that  kXKX = k'X: 

 k = 
L0 k'T (1 + KTP)3 + k'R (1 + KRP)3

L0KT(1 + KTP)3 + KR(1 + KRP)3  = 
L4 kT {1 + 1/(KTP)}3 + kR {1 + 1(KRP)}3

L4 {1 + 1/(KTP)}3+{1 + 1/(KRP)}3  

And association will be to the unoccupied sites: 

 k' cRedHb = k'T(4Tt−TO2) + k'R(4Rt–RO2) = k'T 4
 (1 + KTP)3 T0 + k'R 4

 (1 + KRP)3 R0 

    = 4{L0 k'T (1 + KTP)3 + k'R (1 + KRP)3}R0 

      or  = 4[L4 k'T/(KTP){1 + 1/(KTP)}3 + k'R/(KRP){1 + 1/(KRP)}3]R4 

so that  –  again using  kX = k'X/KX: 

 k' = 
L0 k'T (1 + KTP)3 + k'R (1 + KRP)3

L0(1 + KTP)3 + (1 + KRP)3  = 
L4 kT {1 + 1/(KTP)}3 + kR {1 + 1(KRP)}3

(L4/KT) {1 + 1/(KTP)}3+(1/KR){1 + 1/(KRP)}3 

leading to an 'apparent equilibrium parameter' – which of course is not constant: 

 K= k'/k = 
L0 KT (1 + KTP)3 + KR (1 + KRP)3

L0(1 + KTP)3 + (1 + KRP)3  = 
L4 {1 + 1/(KTP)}3 + {1 + 1(KRP)}3

(L4/KT) {1 + 1/(KTP)}3+(1/KR){1 + 1/(KRP)}3 

so that  KP(1–S) = S  is indeed valid. Note, that the 'apparent P50'= 1/K. 
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