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Diffusion through a flat layer - non-steady-state - approach with exponential functions. 

Layer runs from x=0 to x=L; 

At x=0 the O2 pressure P is kept (virtually) zero; the O2  streaming into the adjacent gas 

chamber is measured by following the increasing but negligibly low P. 

On x=L at time t=0 the pressure is increased from 0 to P₀ . This will induce a 'moving front' of 

O2 from x=L towards x=0, which ultimately will approach a steady-state straight line for P 

within the layer, P → P₀ x/L for 0<x<L. 

For solving the time-dependent profile in the layer the Fourier 

method will be applied. The easiest way is, to solve for a 

(virtual) layer that runs from x=–L to x=L where the profile is 

antisymmetric: this means, that P(–x)=–P(x). Then, there 

indeed is a precondition P=0 at x=0, as required; and an 

additional precondition will be at the virtual opposite 

boundary P=–P₀  at x= –L, all for t>0. 

Because of the antisymmetry, the solution can be written as 

Fourier series in x with only sine terms: 
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which must satisfy the differential equation: 
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applied on the nth sine term, we find for the nth time function fn(), dropping the sin(): 
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which is easily solved as an exponential function so that: 
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The coefficients gk can be found in a standard Fourier way by multiplying P on t=0 – which is 

zero everywhere - by the kth sine term and integrating from –L to L: 
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The first term is integrated easily: 
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and for the second term, all elements of the sum are zero except for n=k: 
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from which the gk can be solved: 
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 which in turn can be substituted into the equation for P: 
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Note, that this solution is derived for the 'virtual' layer –L<x<L but in reality is valid only for 

the 'real' layer 0<x<L. The oxygen flux J into the gas chamber next to x=0 is directly 

proportional to ∂P/∂x at x=0: 
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and the build-up of pressure by integrating J over time: 
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easily solved as: 
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For increasing time, the exponential terms disappear and the increase of gas pressure will 

follow a straight line; 
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with an apparent starting time tL: 

 tL = 
L2

6D
 


